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ABSTRACT: The content of phenolic compounds determines the state of phenolic ripening of red grapes and is a key criterion in
setting the harvest date to produce quality red wines. In this study, the feasibility of Fourier transform mid-infrared (FT-MIR)
spectroscopy combined with partial least-squares (PLS) regression to quantify phenolic compounds is reported. The reference
methods used for quantifying these compounds (which were evaluated as total phenolic compounds, total anthocyanins, and
condensed tannins) were the usual ones used in cellars that employed UV-vis spectroscopy. To take into account the high natural
variability of grapes when building the calibration models, fresh grapes from six varieties, at different phenolic ripening states were
harvested during three vintages. Destemmed and crushed grapes were subjected to an accelerated extraction process and used as
calibration standards. A total of 192 extracts (objects) were obtained, and these were divided into a training set (106 objects) and a
test set (86 objects) to evaluate the predictive ability of themodels. Among the differentMIR regions of the extract raw spectra, those
that provided the highest variability on the absorption were selected. The results showed that the best PLS regression model was the
one obtained when working in the region of 1168-1457 cm-1 because it gave the most accurate and robust prediction for total
phenolic compounds (RMSEP % = 4.3 and RPD = 4.5), total anthocyanins (RMSEP % = 5.9 and RPD = 3.5), and condensed
tannins (RMSEP % = 5.8 and RPD = 3.8). Therefore, it can be concluded that FT-MIR spectroscopy can be a fast and reliable
technique for monitoring the phenolic ripening in red grapes during the harvest period.
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’ INTRODUCTION

The study of phenolic compounds has taken on a special signi-
ficance in recent years due to their contribution to the organoleptic
properties of red wine. The two most important classes of phenolic
compounds found in grapes are anthocyanins and tannins.1 Antho-
cyanins, located in grape skins, are responsible for the color of red
grapes.2 Tannins, located in grape seeds and skins, aremainly respon-
sible for mouthfeel properties such as astringency and body of wine.3

Moreover, tannins are important because they affect the development
of color during wine aging. The concentration of the phenolic
compounds increases during grape ripening, although it is affected
by many factors including grape variety,4 climatic and soil conditions
(“terroir”),5,6 and viticulture techniques and enological treatments.7,8

Therefore, the determination of this concentration, which has a direct
relationship with the phenolic ripening state, is a key criterion in
setting the harvest date to produce quality red wines.

The usual analytical methods used to quantify the phenolic
parameters in grapes are based on spectrophotometricmeasurements
at 520 nm for total anthocyanins9 and at 280 nm for total phenolic
compounds2 and condensed tannins.10 These methods are generally
used in cellars because they are sufficiently simple and precise.
However, during grape ripening controls, a large number of samples
have to be analyzed daily and, then, these methods become tedious
and time-consuming.

The use of spectrometric techniques, such as Fourier trans-
formmid-infrared (FT-MIR) spectroscopy, has recently emerged as a
powerful analytical tool that allows the fast and simultaneous analysis
of several parameters in a large number of samples. Due to the great
amount of information about the sample composition that each FT-
MIR spectrum provides, it is necessary to use of chemometrics tools

to make the most of its potential both for qualitative analysis and for
quantitative analysis. Partial least-squares (PLS) regression is a multi-
variate calibration method that is particularly useful when we need to
predict a set of dependent variables from a large set of independent
variables (i.e., predictors).11

FT-MIR equipments have already been demonstrated to be
suitable for routine qualitative analysis and process control in
wineries by analyzing raw materials,12 monitoring the fermenta-
tion 13,14 or determining some of the main compounds in wine
such as ethanol, organic acids, or sugars.15-17 In regard to the
analysis of phenolic compounds, there are also some applications
of FT-MIR spectroscopy related to the quantification of these
compounds in white18 and red wines.19-24 However, studies to
determine the concentration of phenolic compounds in red grape
homogenates have been developed using near-infrared spectroscopy
(NIR).25,26 Moreover, in this study frozen samples were used for
developing the calibration models, and this sample conservation
treatment affects the accuracy of the predictive results as we demon-
strated in previous studies,27mainly due to the effect of the rupture of
the cell membrane of the skins by the ice crystals, which could affect
the precision of the extraction step.

Therefore, the aim of this study was to evaluate the potential of
FT-MIR, combined with PLS multivariate calibration, for quan-
tifying phenolic compounds in red grape. With this objective, the
phenolic contents (evaluated as total phenolic compounds, total
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anthocyanins, and condensed tannins) of different fresh red
grapes at different degrees of maturity were spectrophotometri-
cally determined according to the methods usually employed in
cellars, and the results obtained were correlated with FT-MIR
response. Then, the models obtained were used to predict the
concentration of new samples. From these predictions we
evaluated the reliability of this technique for providing the value
of some phenolic parameters commonly used in cellars, which
would allow this technique to be used to monitor phenolic
ripening in red grapes.

’MATERIALS AND METHODS

Sample Preparation. Fresh grape berries of six red varieties
(Merlot, Tempranillo, Syrah, Garnacha, Cari~nena, and Cabernet
sauvignon), at different states of phenolic ripening (from veraison until
harvest) and from three different vintages (2007, 2008, and 2009) were
obtained from the experimental vineyard of the Faculty of Oenology of
Tarragona (Rovira i Virgili University, Spain). To ensure a representa-
tive sampling, 200 berries from central rows and alternative vines,
combining sunlight and shadow and different parts of the cluster
(upper, middle, and bottom) were chosen.

Grapes were destemmed and ground at room temperature using an
Ultra-Turrax high-speed homogenizer at 24000 rpm for 2 min to get a
smooth paste. The phenolic compounds of each sample were extracted
by using the method previously optimized in our laboratory27 that
provides a recovery of total phenolic compounds of >95%. Therefore, 50
g of paste was macerated during 15 min at 40 �C in a hydroalcoholic acid
solution (85 mL of HCl 1% v/v þ 15 mL of ethanol 96%) under
constant agitation. Then the sample was centrifuged for 10 min at 8000
rpm, and the precipitate was resuspended in 50mL of extracting solution
and recentrifuged. Finally, the supernatants of both centrifugations were
joined, and the volume was completed to 200 mL with the extracting
solution.
Instrumentation. The grapes were ground using a high-speed

homogenizer Ultra-Turrax T-18 (IKA, USA) equipped with a S18N-
19G rotating shaft. Sample centrifugation was carried out by a Hettich
Universal 32 R centrifuge (Tuttlingen, Germany). The reference
analytical measurements were performed by using a Thermo Spectronic
ultraviolet-visible spectrophotometer model Helios γ (Thermo Elec-
tron Corp., Cambridge, U.K.). All spectra of the extracts were collected
using a FT-MIR Nexus (Thermo, USA), equipped with a deuterated
triglycine sulfate detector (DTGS). The instrument was connected to a
TDI Bacchus (Gav�a, Spain) autosampler. The software package OM-
NIC version 6.2 from Thermo Nicolet was used for spectra acquisition.
The software used for data analysis and calibration was the Unscrambler
package (version 9.0, CAMO ASA, Norway).
Reagents and Standards. The standards of malvidin-3-gluco-

side (purityg 90%) and (þ)-catechin (purityg 96%) were supplied by
Fluka (Madrid, Spain). Gallic acid monohydrate (99.5%), tannic acid
(99.9%), and ammonium sulfate (99.5%) were supplied by Scharlab
(Barcelona, Spain). Methyl cellulose (M-0387) was supplied by Sigma
Aldrich (Madrid, Spain). The rest of the chemicals used for the study
were of analytical reagent grade and supplied by Scharlab.
Reference Analytical Measurements. The phenolic ripening

of grapes was evaluated by three parameters: total phenolic compounds,
total anthocyanins, and condensed tannins. The reference methods used
for quantifying them were based on UV-vis spectroscopy.
Total Phenolic Compounds Content (TPC). This value was deter-

mined by measuring at 280 nm the absorbance of extract sample, in a 10
mm quartz cuvette, previously diluted 50 times in deionized water2 and
using a calibration line built with gallic acid monohydrate as standard at
six different concentrations in the range of 2.2-18.0 mg L-1. The total

phenolic compounds content was expressed in milligrams of gallic acid
per kilogram of grape.

Total Anthocyanins Content (TA). This parameter was determined
by measuring the absorbance at 520 nm of the extract, in a 10 mm plastic
cuvette, previously diluted 25 times with 0.1MHCl9 to get a pH close to
1.0 and using a calibration line built using malvidin-3-glucoside as
standard at six different concentrations in the range of 2.4-20.0 mg
L-1. The total anthocyanin content was expressed in milligrams of
malvidin-3-glucoside per kilogram of grape.

Condensed Tannins Content (CT). The quantification of these
phenolic compounds was carried out by using the indirect method of
precipitation with methyl cellulose10 and using a calibration line built
with (þ)-catechin as standard at six different concentrations in the range
of 19.2-76.9 mg L-1. This content was expressed in milligrams of (þ)-
catechin per kilogram of grape.
Mid-Infrared Scanning Spectra. The MIR spectra of the sam-

ples were collected using a FT-MIR Nexus (Thermo, USA), connected
to a TDI Bacchus autosampler, which was equipped with an online and
automatic system of sample filtration (stainless steel filter of food grade
with a pore size of 50 μm, Teflon coated). The FT-MIR spectrum
acquisition takes only 30 s per sample.

All spectra were averaged from 32 scans and collected in absorbance
mode, at 4 cm-1 spectral resolution, on the 979-2989 cm-1 wave-
number range (MIR vibrational zone). To eliminate the possible
equipment drift over time, every 10 h, the equipment collected an
environmental spectrum (considering water vapor together with CO2)
and redefined the background.

On the other hand, because water dominates the spectrum of aqueous
samples, prior to the analysis of the grape extracts, a blank of distilled
water was acquired automatically by the spectrometer to isolate the
water absorption bands as done in other studies.28

Enrichment Experiments. During grape ripening, changes in the
concentration of chemical compounds different from the phenolic
compounds, such as sugars or organic acids, take place. Therefore, it is
difficult to determine which compound or compounds are responsible
for the changes observed in the spectral response. To locate the spectral
regions associated with phenolic compounds we compared a grape
extract spectrum with the spectra from the same grape extract enriched
with four phenolic compounds of different chemical structure. Thus,
different concentration levels (ranging from 0.5 to 5 g L-1) of gallic acid,
(þ)-catechin, and tannic acid, as well as 1 mg of malvidin-3-glucoside
(commercial standard format), were added to different grape extracts.
Because these compounds present different chemical compositions and
polymerization grades, they were very helpful and appropriate for
identifying the absorbance regions of FT-MIR spectra related to
phenolic compounds present in grapes and, therefore, for selecting the
suitable wavenumbers used on the calibration of phenolic compounds.
Chemical structures of the four different phenolic compounds are shown
in Figure 1.
Development and Validation of the FT-MIR Models. Che-

mometrics was used to perform both descriptive and quantitative
analysis of the data. The descriptive analysis was done using the principal
components analysis (PCA) method. PCA is used to describe the
maximal quantity of information present in the data set using a small
number of latent variables (i.e., not directly measured), and it is very
useful to reveal possible grouping samples and to visualize the presence
of outliers.29

Quantitative analysis was done using PLS regression. PLS regression
is a method used for relating a matrix of predictor variables, X (i.e.,
spectra), and a matrix of chemical properties, Y (i.e., concentration
values), by a linear multivariate model.11 For this, X is divided into a
training set to build the model and a set to evaluate the prediction ability
of the model. A critical step in the model building is the selection of the
number of optimal factors (latent variables) to ensure the prediction
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ability and to avoid overfitting. In this paper the number of optimal
factors was obtained by means of leave-one-out cross-validation.29 In
that way, one object of the training set is removed and a PLS model is
built with the remaining ones and, then, this model is used to predict the
removed object. This procedure is repeated until all of the objects in the
training set are selected for a number of given factors. The optimal
number of factors in the PLS model was determined by the lowest root
mean square error of cross-validation (RMSECV) (eq 1)

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼ 1
ðyi - ŷ iÞ2

NCV

vuuut
ð1Þ

where NCV is the number of cross-validation samples (i.e., NCV = N, N
being the number of samples in the training set), yi is the reference
measurement, and ŷ̂\i is the estimated result when the model is built
without sample i.

Related to the calibration step, we evaluated the model fit to the data
with the root mean square error of calibration (RMSEC) expressed as a
percentage (RMSEC %) (eq 2) that can be defined as the mean error of
model.

RMSEC % ¼ 100
y
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N is the number of samples of training set, yi is the reference value for
sample i, and̂ i is the predicted value for sample i.

To test the predictive accuracy of the calibration models built, the
minimal rootmean square error of prediction (RMSEP) was determined
in percent (eq 3)

RMSEP % ¼ 100
y
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whereN is the number of samples of the test set, yi is the reference value
for sample i, andŷ̂i is the predicted value for sample i. The results of future
predictions can then be expressed as “predicted value( 2� RMSEP”.30

Additionally, to standardize the predictive accuracy, for each model
the residual predictive deviation (RPD) was calculated as the ratio

between the standard deviation (SD) of the validation samples and the
RMSEP.31 If the RMSEP is large compared to the spread of that
compound in all samples (SD), a relatively small RPD is obtained. This
means that the model is not able to model suitably the variability. An
RPD value ranging between 2.5 and 3.0 is considered to be poor, and the
models could be applied only for very rough screening. However,
generally, an RPD of >3 could be considered to be very satisfactory
for prediction purposes.12,32

Estimation of the True Prediction Error. Because the refer-
ence values used to construct the models are not known with negligible
uncertainty but instead are obtained with a standard error, the validation
of multivariate calibration models using these values leads to a so-called
apparent prediction error, which systematically overestimates the true
prediction error. To solve this problem we used the simple correction
procedure proposed by Faber et al.33 that yields a more realistic estimate
of the true prediction error (eq 4)

MSEPcor ¼ MSEPapp - σ̂2 ð4Þ

where MSEPcor is the bias-corrected MSEP, MSEPapp is the apparent
MSEP (i.e., the value that we obtained with the test set), and σ̂2is the
variance of the measurement error in the reference values.

’RESULTS AND DISCUSSION

Reference Values. All of the samples harvested at different
phenolic ripening states to consider the high natural variability of
phenolic amount in grapes were extracted by the methodology
described. In this way, 192 extracts were obtained. These were
distributed into a training or calibration set (n = 106 samples)
and a test or validation set (n = 86 samples). The reference values
of the contents of total phenolic compounds (TPC), total

Figure 1. Chemical structures of the four different standards used to determine the FT-MIR spectra absorbance regions of the phenolic compounds:
gallic acid (A), (þ)-catechin (B), malvidin-3-glucoside (C), and tannic acid (D).

Table 1. Descriptive Statistics of Training and Test Setsa

training set (samples = 106) test set (samples = 86)

phenolic
parameter min max mean SD min max mean SD

TPC 1005 2140 1626 363 1058 2035 1623 315
TA 348 1316 810 258 392 1225 791 184
CT 984 3351 2298 595 1320 2912 2258 487

aTPC, total phenolic compounds in mg of gallic acid kg-1; TA, total
anthocyanins in mg of malvidin-3-glucoside kg-1; CT, condensed
tannins in mg of (þ)-catechin kg-1; min, minimum value; max,
maximum value; SD, standard deviation.
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anthocyanins (TA), and condensed tannins (CT) were deter-
mined by using the reference analytical measurements. The
reliability of these methods was previously tested (eight analyses
of the same grape extract sample), and we found that the relative

standard deviation (%rsd) was 1.21 for TCP, 0.73 for TA, and
1.27 for CT.
Table 1 summarizes the contents of the parameters studied

considering all of the samples harvested and analyzed weekly
during the August-October period throughout three different
vintages (2007, 2008, and 2009). As can be seen, both sets had
similar contents of the compounds studied, and the highest
standard deviation value was associated with the CT, which could
be associated with the different size (polymerization degree) of
condensed tannins in grapes from its “veraison” to full ripeness.
Table 2 summarizes the concentration of the phenolic com-

pounds evaluated considering each variety separately. We can
see, for example, that Cari~nena, which is characterized by its low
tannic content, presented the lowest CT value or that Merlot and
Syrah, varieties that are known for their intense red color,
presented the highest values of TA, whereas Garnacha, which
has low color intensity, presented the lowest TA value. However,
we also detected the uncommon behavior of the Cabernet
sauvignon because, although this is considered a highly colored
variety, it presented a low value of TA. This is because the field
zone where this variety grows is very wet, and this high humidity
makes difficult a proper ripening process.
Grape Extracts Spectra. Although the spectral peaks in the

MIR frequencies are usually sharp and well resolved, there were two
main problems when the phenolic compounds of the studied extracts
were analyzed by FT-MIR spectroscopy. The first was that the
phenolic compounds considered (anthocyanins, tannins) are chemi-
cally very similar and therefore displayed similar MIR absorption
characteristics. The second problem was that the contents of water,
organic acids, and sugars, which are the major components of the
grapes, vary during ripening and all of them absorb in the same MIR
region, masking the distinctive MIR vibrations of phenols.14,28,34-36

In Figure 2 are shown the FT-MIR spectra of 192 grape extracts and,
as can be seen, the water and ethanol (from the extraction step)

Table 2. Concentration of the Phenolic Compounds in
Each Variety Studied (Samples from 2007, 2008, and
2009 Vintages)a

grape
variety

no. of
samples

phenolic
parameter min max mean SD

Merlot 38 TPC 1679 2140 1943 117
TA 843 1296 1021 139
CT 1771 2921 2435 270

Tempranillo 34 TPC 1625 1996 1812 92
TA 651 1002 782 103
CT 2291 3351 2879 247

Syrah 32 TPC 1648 2120 1848 121
TA 826 1316 1024 142
CT 1950 2828 2415 178

Cari~nena 30 TPC 1005 1196 1092 47
TA 485 759 639 70
CT 984 1495 1358 95

Garnacha 24 TPC 1023 1295 1173 82
TA 348 482 411 41
CT 1448 2217 1825 260

Cabernet sauvignon 34 TPC 1328 1856 1659 150
TA 686 883 784 58
CT 937 2911 2453 479

aTPC, total phenolic compounds in mg of gallic acid kg-1; TA, total
anthocyanins in mg of malvidin-3-glucoside kg-1; CT, condensed
tannins in mg of (þ)-catechin kg-1; min, minimum value; max,
maximum value; SD, standard deviation.

Figure 2. FT-MIR raw spectra of the 192 extracts (979-2989 cm-1) with the three dominant absorption zones pointed out.
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absorption peaks dominate the spectrum. For ethanol, the most
intense bands are located at 1045 and 1083 cm-1 due to the
contribution of C-O stretch (oxygen belonging to a primary
alcohol). Other less intense bands located around 2850-2960
cm-1 are due to C-H stretch.36,37 For water, a negative absorption
band located in the 1500-1740 cm-1 region can be observed. This
negative peak is due to the automatic subtraction of the blank that the
equipment makes by using distilled water prior to the sample
analysis.28 Related to other compounds present in the samples, on
the one hand canbe seen an absorption band from900 to 1100 cm-1,
which can be assigned to C-O valence vibrations and C-O-C
stretching vibrations of the carbohydrates, including fructose and
glucose.14,36,38On the other hand, it is well-known that organic acids
present an alcohol functional group and, therefore, C-O and the
O-H bonds. These different bonds absorb around 1060-1150
cm-1 due the C-O stretch (oxygen belonging to a secondary
alcohol) and around 1320-1420 cm-1 due the O-H bend.28

Taking into account this great number of absorption bands, it
was not easy to know which were the spectral regions where the
phenolic compounds absorbed. Therefore, we investigated
the spectral response of four different phenolic compounds by
adding increasing amounts of these compounds in a real sample
(grape extract). These compounds were gallic acid, (þ)-cate-
chin, malvidin-3-glucoside, and tannic acid.
These additions revealed particularly evident variations in

the spectral region from 1168 to 1457 cm-1 for gallic and tannic
acids and in the spectral regions from 1133 to 1160 cm-1, from 1238
to 1322 cm-1, and from 1373 to 1457 cm-1 for (þ)-catechin
(Figure 3). When malvidin-3-glucoside was added to determine the
region where anthocyanins absorb, no variations in the spectra were
detected due to the low concentration of the commercial standards
of these compounds.
Therefore, from these enrichment experiment results, we may

conclude that, for phenolic compounds calibration purposes, the
best spectral region ranged between 1133 and 1457 cm-1, whereas
the remaining wavenumbers (from 979 to 1129 cm-1, from 1457 to
1477 cm-1, and from 2649 to 2989 cm-1) present small and not
distinguishing signals of grape phenolic compounds.
Principal Components Analysis. To carry out a study of the

information contained in the data set, we applied a PCA consider-
ing the response obtained when working with the full range (979-
2989 cm-1). The results showed that three principal components
(PCs) explained 97.90%of the spectral variation of the samples (first
PC, 60.39%; second PC, 35.05%; third PC, 2.46%). Figure 4 shows
the loadings plot, which determines the influence of each wave-
number on the variance along this region and, as expected, the three
main zones with high influences in the variance of the spectra
samples coincided with the three regions where the signal is higher:
979-1477, 1500-1740, and 2869-2989 cm-1. Because the
second region corresponds to the water signal and the third region is
related to the ethanol contents, it can be concluded that the 979-
1477 cm-1 region contains almost all of the information that
characterizes the samples. Indeed, a PCA of this region
showed that the first PC explained 93.77% of variance and
that the three first PCs explained 99.41% of variance. There-
fore, we considered this region as very useful for calibration
purposes and called it the fingerprint region. However, taking
into account the results of enrichment experiments and also
considering that inside this wavenumber range could be
observed several sharp absorption bands, it was reasonable

Figure 3. Spectral responses of different concentrations of gallic acid
(A), (þ)-catechin (B), and tannic acid (C) added to a grape extract
sample.

Figure 4. Loadings for the three first PCs on the full range (979-
2989 cm-1) corresponding to the 192 sample spectra.
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to consider other smaller intervals in the calibration. After
different attempts, the intervals that were shown to contain
more information were the 1133-1457 and 1168-1457 cm-1

ranges, both coincident with some of the ranges chemically
determined.
Quantitative Analysis: PLS Models. When one is working

with IR, it is important to determine whether spectra preproces-
sing is necessary before data analysis. However, because our FT-
MIR instrument allows high levels of signal stability and repro-
ducibility to be achieved over time, we decided not to preprocess
the spectral data and work with the raw spectral data.
With a quantification purpose, we used the PLS regression

method to build four different multivariate calibration models
between the FT-MIR spectra (using the four wavenumber ranges
selected) and the reference values of the phenolic concentration.
The results of each model are reported in Table 3.
As can be seen, in most of cases, the four regions tested

provided good calibrationmodels (RMSEC%< 6.0) for the three
types of phenolic compounds with accurate prediction (RMSEP
% < 8.0 and RPD > 3.0). Nevertheless, it can be also observed
that the regions where we found the main phenolic spectral
features were, in general, the best correlated with the concentra-
tion, providing the best results of the parameters that evaluate the
accuracy assessment such as RPD (>3.0) or RMSEP % (<6.0).
Total Phenolic Compounds (TPC) Prediction. To verify the

absence of bias between the reference values and the predicted
values, we carried out a joint confidence region analysis. With this
study we could conclude that the results obtained by the four FT-
MIRmodels are reliable because, with a significance level of 0.05,
the slope and intercept of the four regression lines obtained were
not significantly different from 1 and 0, respectively.
Indeed, when dealing with this phenolic parameter, the

RMSEP% values obtained were satisfactory for all regions tested,
but the smallest calibration error and also the best R2cal were
obtained when we used the full-range region. However, seeing
the relatively high number of factors and also the high difference
between the values of RMSEC and RMSEP, we concluded that
this model was slightly overfitted.
The comparison of the other three models showed that the

1168-1457 cm-1 range provided the best results with both
calibration and prediction errors. This behavior suggested that

Table 3. Analytical Performance Parameters of the Multivariate Calibration Models Built by PLS Regression Using Different
Spectral Regions of Grape Extractsa

dependent
variable model

region
(cm-1) PLS factors RMSEC RMSEC (%) R2cal RMSEP RMSEP (%) R2val RMSEPcor(%) RPD

TPC full-range 979-2989 13 56.5 3.5 0.976 72.5 4.5 0.946 4.3 4.3
fingerprint 979-1477 11 74.7 4.6 0.956 86.9 5.4 0.935 5.3 3.7
main phenolic region 1133-1457 8 83.4 5.1 0.947 85.7 5.3 0.930 5.2 3.7
selected region 1168-1457 9 67.3 4.1 0.965 70.6 4.3 0.951 4.1 4.5

TA full-range 979-2989 15 28.0 3.4 0.988 38.9 4.9 0.959 4.8 4.8
fingerprint 979-1477 10 47.3 5.8 0.966 51.4 6.5 0.930 6.5 3.6
main phenolic region 1133-1457 9 48.3 6.0 0.965 51.1 6.4 0.927 6.4 3.5
selected region 1168-1457 10 41.3 5.0 0.973 46.8 5.9 0.928 5.9 3.5

CT full-range 979-2989 11 130.6 5.7 0.947 171.6 7.6 0.905 7.5 2.9
fingerprint 979-1477 10 121.4 5.3 0.961 179.5 8.0 0.900 7.9 2.9
main phenolic region 1133-1457 10 121.5 5.3 0.957 134.0 5.9 0.934 5.8 3.7
selected region 1168-1457 9 128.2 5.6 0.953 130.8 5.8 0.937 5.7 3.8

aCalibration set n = 106 samples; validation set = 86 samples. TPC, total phenolic compounds in mg of gallic acid kg-1; TA, total anthocyanins in mg of
malvidin-3-glucoside kg-1; CT, condensed tannins in mg of (þ)-catechin kg-1; RMSEC, root mean square error of calibration; RMSEP, root mean
square error of prediction; R2, coefficient of determination; RPD, residual predictive deviation; RMSEPcor, bias-corrected RMSEP.

Figure 5. Correlation plot of training and test for the prediction of total
phenolic compounds (expressed as mg kg-1 of gallic acid) (A), total
anthocyanins (expressed as mg kg-1 of malvidin-3-glucoside) (B), and
condensed tannins (C) (expressed as mg kg-1 of catechin) using
selected region model (1168-1457 cm-1).
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this spectral region was more specific for the phenolic com-
pounds than the other regions considered or that the masking
effect produced by the interfering substances is less important.28

Moreover, when the correction of the RMSEP was made, we
obtained a RMSEPcor of 4.1%, so this good value, together with
the RPD of 4.5, ensures the robustness of the model for the
prediction of TPC.
Figure 5A shows graphically the good correlation plot of

calibration and validation for the prediction of TPC using the
selected 1168-1457 cm-1 wavenumber range. Indeed, although
from the distribution of the samples shown in Figure 5A, it can be
thought that it shows bimodality (due to the fact that some grape
varieties presented lower amounts of phenolic compounds than
others), it was not necessary to build two calibrations because the
validation samples of the external set (i.e., test set) were correctly
predicted. Therefore, this behavior demonstrated that there was
no overfitting.
Total Anthocyanins (TA) Prediction. For this phenolic para-

meter the joint confidence region analysis showed that there is no
bias between the reference and the predicted values, so they are
comparables. As can be observed in Table 3, the four wavenum-
ber intervals assayed showed good values for all of the para-
meters, and these were slightly higher than those of the TPC.
From the results presented in Table 3, we conclude that the

best TA prediction was obtained when using the full range because
this model presented the smallest error values, the best R2val, and the
highest RPD.However, the difference betweenRMSECandRMSEP
is the highest, and the number of PLS factors is also higher than those
necessary to build the other models. Indeed, the models obtained
when using the other regions are also very suitable, especially the one
obtained in the selected region 1168-1457 cm-1, as can be seen in
Figure 5B.
Because we did not chemically corroborate the spectral features

of the anthocyanins and, taking into account the heterogeneous

nature of these pigments given by the presence of glycoside
anthocyanins, it is reasonable to think that the relevant spectral
information could not be totally coincident with the main phenolic
spectral frequencies. Therefore, for these compounds, although a
good calibration was obtained in the 1168-1457 cm-1 region, it is
possible to obtain better calibration and prediction results when
more spectral information is considered (i.e., full range). However,
the corrected prediction error obtained, RMSEPcor, although ac-
ceptable whatever the region selected, was always significantly
higher than the standard error of the reference method due to the
low value of this latest.
Condensed Tannins (CT) Prediction. When evaluating the

data for this parameter, we had to remove some samples from the
training set because they behaved as outliers. The outliers were
identified by their high values of residual y-variance and leverage
and subsequently subtracted from the model. The presence of
outliers can be attributed, on the one hand, to the fact that the
degree of polymerization of these compounds may be very
different depending on the grape characteristics and, on the
other hand, to the fact that the value of this parameter is strongly
dependent on themethod used for its determination. Taking into
account that the methylcellulose precipitation assay is an indirect
method of measurement and that it determines only the phenols
with a high size, the accuracy of this method, even suitable, could
make more difficult the correspondence with the spectral re-
sponse. Once these samples were obviated, the models built were
satisfactory (Table 3) and the joint confidence region analysis for
all of the models constructed showed the absence of significant
bias. However, we could clearly see that the spectral information
obtained chemically helped to improve themodel. Thus, whereas
the wider regions provided the less accurate prediction (with the
highest RMSEP % values and the worst R2val) and the models
constructed in these regions are less robust (RPD < 3.0), the
models obtained in the regions in which the enrichment

Table 4. Analytical Performance Parameters of the Individual Multivariate Calibration Models Built by PLS Regression for Each
Variety and Using the 1168-1457 cm-1 Spectral Regiona

grape variety dependent variable samples PLS factors RMSEC RMSEC (%) R2cal RMSECV RMSECV (%) R2val RPD

Merlot TPC 27 10 5.0 0.3 0.998 22.7 1.2 0.953 4.7
TA 29 7 14.6 1.4 0.988 24.2 2.4 0.966 5.5
CT 21 9 15.8 0.6 0.996 66.7 2.8 0.923 3.7

Tempranillo TPC 24 8 7.5 0.4 0.992 17.9 1.0 0.954 4.7
TA 22 7 10.1 1.2 0.992 18.7 2.3 0.971 6.0
CT 23 6 24.4 0.8 0.989 33.4 1.4 0.979 7.1

Syrah TPC 24 5 18.1 1.0 0.980 25.6 1.4 0.961 5.2
TA 30 9 7.7 0.8 0.997 24.2 2.4 0.972 6.1
CT 22 7 21.0 0.9 0.976 41.7 1.7 0.906 3.3

Cari~nena TPC 20 10 1.8 0.2 0.998 12.7 1.2 0.904 3.3
TA 26 8 5.1 0.8 0.995 15.4 2.4 0.955 4.8
CT 20 7 7.3 0.5 0.986 25.0 1.8 0.846 2.6

Garnacha TPC 20 7 8.1 0.7 0.991 14.9 1.3 0.971 6.0
TA 20 6 6.1 1.5 0.979 8.5 2.1 0.959 5.1
CT 22 5 46.8 2.5 0.967 67.2 3.7 0.932 3.9

Cabernet sauvignon TPC 27 7 13.9 0.8 0.991 23.2 1.4 0.974 6.3
TA 23 8 7.9 1.0 0.982 16.1 2.1 0.927 3.8
CT 25 6 45.0 1.8 0.978 73.0 2.9 0.943 4.3

aTPC, total phenolic compounds in mg of gallic acid kg-1; TA:, total anthocyanins in mg of malvidin-3-glucoside kg-1; CT, condensed tannins in mg of
(þ)-catechin kg-1; RMSEC, rootmean square error of calibration; RMSEP, rootmean square error of prediction;R2, coefficient of determination; RPD,
residual predictive deviation.
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experiments gave the best results, mainly when the selected
region of 1168-1457 cm-1 was used. Figure 5C illustrates the
good correlation obtained for this parameter in this region. As
occurred with TPC correlation, it could be thought that
Figure 5C shows bimodality but, because the validation samples
of the external set were correctly predicted, we could conclude
that there was no overfitting.
Models for Individual Grape Varieties. Provided the good

results obtained with the full data set of the samples analyzed and
especially in the spectral range of 1168-1457 cm-1, we decided
to check the FT-MIR spectroscopy ability to predict the phenolic
parameters but working with each grape variety individually.
For this purpose and taking into account the smaller number

of samples, the PLS models were constructed using leave-one-
out cross-validation. As can be seen in Table 4, for all of the grape
varieties the calibration error was very good, with values of
<2.5%, and also the calibration lines obtained were very suitable.
On the other hand, the low values of the error obtained by cross-
validation (<4.0%) also showed the good relationship between
the spectra of each variety and the reference values of phenolic
compounds. The values of RPD of >3.0 gave an idea of the
acceptable robustness of the models built. Only for the CT model
of Cari~nena did we obtain a not good enough R2val value (0.846),
which coincides with the lowest RPD value. This different behavior
can be attributed to the lower range of this parameter values on the
calibration samples because the low contents of phenolic com-
pounds is a varietal characteristic of Cari~nena grapes. This model
only could be applied for rough screening.
From all of these results we conclude that FT-MIR spectro-

metry combined with multivariate calibration allows a simulta-
neously fast and accurate determination of TPC, TA, and CT
concentrations in grape extracts. The possibility of predicting these
grape parameters is an invaluable tool when a large of number of
samples needs to be analyzed, as occurs when a phenolic ripening
control is necessary.
Moreover, the present work also presents a preliminary

attempt to apply the FT-MIR instrument to predict the phenolic
composition of specific grape varieties, which is a starting point
for the design of specificmodels according to the requirements of
the wineries if a greater number of samples were considered.
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